Théorie > Théorie des nombres > Théorème d'Euler-Fermat


Général

Introduction Chapitre entier

Points théoriques

Puissances Indicatrice d'Euler Théorème d'Euler-Fermat Ordre multiplicatif

Exercices

Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7

Prérequis


Introduction

On est très vite amené, en théorie des nombres, à observer des puissances modulo un certain nombre. On peut par exemple se demander quel est le dernier chiffre du nombre $2013^{2013}$, ce qui revient à vouloir déterminer sa valeur modulo $10$. Le théorème d'Euler, dont un cas particulier est celui de Fermat, permet de répondre très facilement à cette question. Il s'agit d'un théorème fondamental : s'il ne fallait en retenir qu'un en théorie des nombres, ce serait certainement celui-là.



Pour pouvoir accéder aux exercices de ce chapitre et ainsi le compléter, vous devez d'abord compléter : Équations modulaires