Théorie > Théorie des nombres > Équations diophantiennes

Descente infinie

$\begingroup$La descente infinie est une méthode permettant de prouver qu'une équation diophantienne ne possède pas de solutions. En fait, cette méthode peut également être utilisée dans d'autres contextes. L'idée est d'associer, à toute solution $s$ (on suppose a priori qu'il en existe), un certain entier $n(s) \in \mathbb{N}$ et de montrer qu'à partir de toute solution $s$, on peut construire une autre solution $s'$ telle que $n(s') < n(s)$. On obtient ainsi une suite strictement décroissante d'entiers naturels, ce qui est absurde (une telle suite n'existant pas). Une autre façon de trouver une contradiction est de considérer une solution $s$ minimisant $n(s)$ et de conclure en contredisant la minimalité à partir de $s'$.

Exemple d'application

La descente infinie peut par exemple être utilisée pour montrer que $\sqrt{2}$ est irrationnel (même s'il est possible de procéder sans). En effet, on procède par l'absurde en supposant que $\sqrt{2}$ est rationnel, ce qui signifie qu'il existe $p, q \in \mathbb{N}$ tels que $\sqrt{2} = \frac{p}{q}$, ce qui s'écrit aussi
$$2q^2 = p^2.$$ Autrement dit, on désire montrer que cette équation (qui est une équation diophantienne d'inconnues $p$ et $q$) ne possède pas de solution. Procédons par l'absurde en supposant avoir une telle solution $(p, q)$. On voit que $p^2$, et donc $p$, est pair, d'où on peut poser $p = 2p'$. On a alors
$$q^2 = 2p'^2.$$ Nous avons donc une nouvelle solution à l'équation de départ : $(q, p')$. Intuitivement, celle-ci est plus petite puisque l'un des deux nombres a été divisé par deux. C'est dans un tel cas qu'il faut considérer la descente infinie : quand on est capable de construire une nouvelle solution plus "petite" dans un certain sens. Ici, on peut définir $n(p, q) = p+q$ et on a, à partir d'une solution $(p, q)$, trouvé une nouvelle solution $(q, p')$ telle que $n(q, p') < n(p, q)$. On peut donc conclure comme expliqué précédemment.$\endgroup$